PREPRINT

Experimental Evidence for Linear Metal-Azide Bonds. The Binary Group 5 Azides $Nb(N_3)_5$, $Ta(N_3)_5$, $[Nb(N_3)_6]$ and $[Ta(N_3)_6]$, and 1:1 Adducts of $Nb(N_3)_5$ and $Ta(N_3)_5$ with CH_3CN^{**}

Ralf Haiges*, Jerry A. Boatz, Thorsten Schroer, Muhammed Yousufuddin, and Karl O. Christe*

Whereas numerous binary transition metal azido-complexes have been reported,^[1-3] no binary Group 5 azides are known. Only a limited number of partially azide-substituted compounds of vanadium, niobium and tantalum have previously been reported.^[4-21]

In this paper, we wish to communicate the synthesis and characterization of $Nb(N_3)_5$, $Ta(N_3)_5$ and their 1:1 adducts with CH_3CN , and of the anions $[Nb(N_3)_6]^-$ and $[Ta(N_3)_6]^-$. We also report the crystal structures of $Nb(N_3)_5 \cdot CH_3CN$ and $[PPh_4][Nb(N_3)_6]$ and the first experimental evidence for the existence of azido compounds with linear metal-N-N bonds.

The reactions of NbF₅ or TaF₅ with excess $(CH_3)_3SiN_3$ in SO_2 solution at -20 °C result in complete fluoride-azide exchange and yield clear solutions of Nb(N₃)₅ or Ta(N₃)₅, respectively, [Eq. (1) (M = Nb, Ta)].

$$MF_5 + 5 (CH_3)_3SiN_3 \longrightarrow M(N_3)_5 + 5 (CH_3)_3SiF$$
 (1)

Pumping off the volatile compounds, SO₂, (CH₃)₃SiF and excess (CH₃)₃SiN₃), at -20 °C

[*] Dr. R. Haiges, Dr. T. Schroer, M. Yousufuddin, Prof. Dr. K. O. Christe

Loker Research Institute and Department of Chemistry

University of Southern California

Los Angeles, CA 90089-1661 (USA)

Fax: (+1) 213-740-6679

E-mail: haiges@usc.edu, kchriste@usc.edu

Dr. J. A. Boatz

Space and Missile Propulsion Division

Air Force Research Laboratory (AFRL/PRSP)

10 East Saturn Boulevard, Bldg 8451

Edwards Air Force Base, CA 93524 (USA)

[**] This work was funded by the Air Force Office of Scientific Research and the National Science Foundation. We thank Prof. Dr. G. A. Olah, and Dr. M. Berman, for their steady support, and Prof. Dr. R. Bau and Drs. S. Schneider and R. Wagner for their help and stimulating discussions.

This page is Distribution A: approved for public release; distribution unlimited.

maintaining the data needed, as including suggestions for reduce	nd completing and reviewing the cing this burden, to Washington I should be aware that notwithstan	collection of information. Send of leadquarters Services, Directoral	comments regarding this bur te for Information Operation	rden estimate or any ones and Reports, 1215 J	s, searching existing data sources, gathering and ther aspect of this collection of information, lefferson Davis Highway, Suite 1204, Arlington to comply with a collection of information if it	
1. REPORT DATE		2. REPORT TYPE		3. DATES COV		
27 APR 2005		Journal Article		00-04-200	05 to 00-04-2005	
4. TITLE AND SUBTITE Experimental Ex	LE ridence for Linear	Metal-Azide Ron	ds. The	5a. CONTRAC	Г NUMBER	
Binary Group 5	Azides Nb(N3)5, T l:1 Adducts of Nb(]- and	5b. GRANT NU	UMBER		
CH3CN (PREPR		3 With	5c. PROGRAM	ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
•	ry Boatz; Thorster	Schroer; Muhan	nmed	2303 5e. TASK NUMBER 0423		
Yousufuddin; Ka	arl Christe					
				5f. WORK UNI	T NUMBER	
	```				NG ORGANIZATION REPORT	
Air Force Research Laboratory (AFMC),AFRL/PRSP,1 Saturn Blvd.,Edwards AFB,CA,93524-7680			SP,10 E.	NUMBER AFRL-PR-ED-JA-2005-162		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory (AFMC), AFRL/PR Drive, Edwards AFB, CA, 93524-7048			S, 5 Pollux	10. SPONSOR/MONITOR'S ACRONYM(S)  XC		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S) <b>AFRL-PR-ED-JA-2005-162</b>		
	ailability statemen blic release; distri					
13. SUPPLEMENTARY <b>Submitted to the</b>	NOTES  Journal: Angewa	ndte Chemie				
azides are known and tantalum had and characteriza [Nb(N3)6]- and [	n. Only a limited nower previously been tion of Nb(N3)5, TTa(N3)6] We also	umber of partially reported.[4-21] I a(N3)5 and their report the crysta	y azide-substitu n this paper, wo 1:1 adducts wit al structures of	ted com-poor e wish to con th CH3CN, a Nb(N3)5·CI	d,[1-3] no binary Group 5 unds of vanadium, niobium mmunicate the synthesis and of the anions H3CN and [PPh4][Nb(N3)6] inear metal-N-N bonds.	
15. SUBJECT TERMS				I	I	
16. SECURITY CLASSII	FICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT	b. ABSTRACT	c. THIS PAGE	or ribblinet	38	PERSUN	

**Report Documentation Page** 

Form Approved OMB No. 0704-0188 produces the pure, yellow, solid, room-temperature stable pentaazides in quantitative yield. As expected for covalently bonded polyazides, ^[22] they are shock sensitive and can explode violently when touched with a metal spatula or by heating in the flame of a Bunsen burner. Their identity was established by the observed mass-balances, vibrational spectroscopy and their conversions with N₃⁻ into hexaazido-metalates and with CH₃CN into 1:1 acetonitrile donor-acceptor adducts, as shown by the crystal structures of  $[P(C_6H_5)_4]^+[Nb(N_3)_6]^-$  and  $Nb(N_3)_5\cdot CH_3CN$ . The reaction of VF₅ with  $(CH_3)_3SiN_3$  was also briefly studied, and fluoride/azide exchange was observed. However, because VF₅ is a stronger oxidizer than NbF₅ and TaF₅ and the azide ion is a strong reducing agent, the product was poorly defined (black solid, Ra 2094 [4.5], 2052 [2.7], 483 [10], 434 [8.0], 383 [5.7]), and the reaction was not further pursued.

The observed infrared and Raman spectra of Nb(N₃)₅ and Ta(N₃)₅ are shown in Figures 1 and 2, respectively, and the observed frequencies and intensities are listed in the Experimental Section. They were assigned (see Tables S1 and S2 of the Supplementary Material) by comparison with those calculated at the B3LYP^[23] and MP2^[24] levels of theory using SBKJ-(d) basis sets.^[25] The agreement between observed and calculated spectra is satisfactory and supports trigonal-bipyramidal structures (Figure 3) for Nb(N₃)₅ and Ta(N₃)₅. The internal modes of the azido ligands are split into clusters of five due to in-phase and out-of-phase coupling of the individual motions. There are always one in-phase and four out-of-phase vibrations, with the in-phase one readily identifiable from its higher Raman intensity. The MN₅ skeletal modes can be derived from D_{3h} symmetry in which the double degeneracy of the E modes is lifted due to the presence of the azido ligands which lowers the overall symmetry to C_s and is likely to produce some distortion from D_{3h}.

Whereas trigonal-bipyramidal arrangements of the azido ligands have previously also been found for  $[Fe(N_3)_5]^{2-,[26]}$  Sb $(N_3)_5$ and As $(N_3)_5,^{[27,28]}$  the details of these structures are very different. In  $[Fe(N_3)_5]^{2-}$ , As $(N_3)_5$  and Sb $(N_3)_5$ , all five M-N-N bonds are strongly bent, and the two axial M-N bonds are significantly longer than the equatorial ones, as expected from VSEPR arguments. In contrast, the axial M-N-N bonds in Nb $(N_3)_5$  and Ta $(N_3)_5$  are almost linear, while the equatorial ones have angles of about 137°. Furthermore, all five M-N bonds and the internal N-N distances of the five azido ligands are essentially the same.

Linear M-N-N bonds had previously been predicted also for the tetraazides of  $d^0$  Ti(+IV), Zr(+IV), and Hf(+IV)^[30] and for  $d^6$  Fe(+II),^[1] but the hexazido dianion of  $d^0$  Ti(+IV) was shown to possess strongly bent Ti-N-N bonds.^[1] These findings show that the linearity of the M-N-N bonds cannot be caused by either a trigonal-bipyramidal structure, multiple M-N bonds, or a  $d^0$  electronic configuration *per se*.

A plausible explanation for the linearity of these M-N-N bonds has recently been proposed. [1] It is based on the recognition that, in a covalent azide, the two free valence electron pairs on the  $N_{\alpha}$  atom can participate in the donation of electron density to the central metal atom. Therefore, depending on the availability of suitable empty orbitals on the metal center, the  $N_{\alpha}$  atom can function as either a mono-, bi-, or tri-dative donor, thereby influencing the M-N-N bond angle (Figure 4). In the monodative binding mode, the M-N-N bong angle is close to tetrahedral, ( $\sim 107$  ° or somewhat larger). This is the case for main group elements which involve mainly the single-lobe s and p orbitals of the central atom. Typical examples are:  $[C(N_3)_3]^+$  (108 °), [31]  $[B(N_3)_4]^-$  (117.6 °), [32]  $[As(N_3)_6]^-$  (115.6 °), [33] and  $[Te(N_3)_6]^2$ - (109.3 and 121.2 °). [34] In transition metals, the presence of d orbitals offers additional lobes for overlap and, as a result, the  $N_{\alpha}$  atom can act as either a monodative, bidative, or tridative donor with M-N-N bond angles

ranging from 118 ° in monodative  $Hg_2(N_3)_2^{[35]}$  to about 180 ° in tridative  $Ti(N_3)_4$ ,  $Zr(N_3)_4$ ,  $Hf(N_3)_4$ ,  $^{[30]}Fe(N_3)_2$ ,  $^{[1]}V(N_3)_5$ ,  $Nb(N_3)_5$ ,  $Ta(N_3)_5$ , and  $CH_3CN\cdot Nb(N_3)_5$ . A typical M-N-N bond angle range for a bidative donor mode appears to be about 135 °, as found for  $W(N_3)_6^{[2]}$  and the equatorial ligands in  $Nb(N_3)_5$  or  $Ta(N_3)_5$ . Based on the calculated bond angles, the axial azido ligands in  $Nb(N_3)_5$  and  $Ta(N_3)_5$  would involve tridative donor bonds, while the equatorial ones would constitute bidative ones. A preliminary analysis of the presently known azido compounds with linear M-N-N bonds indicates that all of them obey the following condition [Eq. (2)]:

(number of monodative ligands x 1) + (number of bidative ligands x 2) + (number of tridative ligands x 3) + (number of d electrons of the cationic center) = 12 (2)

The lowest-energy vacant orbitals in these transition metal centers are the  $s^2$  electrons of the valence shell and the  $d^{10}$  electrons from the next lower shell. The "magic number 12" in Eq. 2 can be rationalized by a tendency of the metal centers to obtain an energetically favorable filled  $s^2d^{10}$  electron shell. This objective is achieved by involving as many free valence electron pairs of the  $\alpha$ -nitrogen atoms of azido ligands in the bonding as needed for reaching the "magic number 12". Thus, Eq. 2 provides a simple way to predict whether in transition metal complexes an azide ligand will be mono-, bi-, or tri-dative. For example, in Nb(N₃)₅ and Ta(N₃)₅ we have  $d^0$  metal centers, three bidative and two tridative ligands, i.e., 0 + 3x2 + 2x3 = 12; in Fe(N₃)₂ we have  $d^0$  Fe(II) and two tridative azido groups, i.e., 6 + 2x3 = 12; in Ti(N₃)₄ we have  $d^0$  Ti(IV) and four tridative ligands, i.e., 0 + 4x3 = 12. Although there have been two recent molecular orbital studies on the closely related tridentate Zr(BH₄)₄ adduct^[1,36] and on tridative Ti(N₃)₄^[30], neither one recognized the simple correlation given by Eq. 2.

Some comment is required about the terminology of "multidative" bonds proposed above. We have carefully considered the uses of either "mono-, bi-, or tri-dentate" or "single,

double, or triple" bonds in place of "mono-, bi-, or tri-dative" bonds, but were dissatisfied with either choice. The term "multidentate" is defined as bonding through multiple atoms, and "multiple bonds" imply bond orders which are significantly higher than one. Neither situation correctly describes the bonding shown in these azides. In the linear metal azides, the metal- $N_{\alpha}$  bond clearly does not possess triple bond character, although three  $\alpha$ -nitrogen electron pairs participate in the bonding. The definition of what constitutes a chemical bond and, particularly, what constitutes a multiple bond presents a very general problem, and the lack of clear definitions, combined with the zeal of publicity-hungry chemists for novelty, has led to widespread and abusive claims.

By using CH₃CN instead of SO₂ as solvent for the reactions of NbF₅ and TaF₅ with excess (CH₃)₃SiN₃, yellow solutions of CH₃CN·Nb(N₃)₅ and CH₃CN·Ta(N₃)₅, respectively, were obtained [Eq. (3) (M = Nb, Ta)].

$$MF_5 + 5 (CH_3)_3 SiN_3 \longrightarrow CH_3 CN \cdot M(N_3)_5 + 5 (CH_3)_3 SiF$$
 (3)

Removal of the volatile compounds (CH₃CN, (CH₃)₃SiF and excess (CH₃)₃SiN₃) at -20 °C results in the isolation of the acetonitrile-adducts of the pentaazides. Although still dangerous and explosive, both acetonitrile-adducts are less shock-sensitive than the corresponding donor-free pentaazides.

Both acetonitrile-adducts were isolated as yellow solids and were characterized by vibrational spectroscopy, their conversion with  $N_3^-$  into the hexaazido-metalates and, in the case of  $CH_3CN\cdot Nb(N_3)_5$ , by its crystal structure. The observed Raman spectra of  $CH_3CN\cdot Nb(N_3)_5$  and  $CH_3CN\cdot Ta(N_3)_5$  are shown in Figures 5 and 6, respectively, and their frequencies and intensities are given in the Experimental Section. A comparison with the calculated spectra is

given in Tables S3 and S4 of the Supplementary Material, and the given assignments are in accord with those previously reported^[38,39] for the related CH₃CN·SbF₅ adduct.

 $CH_3CN\cdot Nb(N_3)_5$  crystallizes in the monoclinic space group P2(1)/c. The X-ray structure analysis^[37] (Figure 7) reveals the presence of isolated  $CH_3CN\cdot Nb(N_3)_5$  units. The closest Nb···N and N···N contacts between neighboring molecules are 3.98 Å and 3.04 Å, respectively.

The molecule consists of a pseudo-octahedral NbN₆ skeleton with CH₃CN and one azido group in the axial positions. The equatorial positions are occupied by the remaining 4 azido groups which, interestingly, are all bent away from the axial azido ligand. The axial Nb-N3 distance is about 0.09 Å shorter than the four equatorial ones. The most interesting feature, however, is the fact that the axial azido group exhibits a large Nb-N-NN bond angle of 168.8°, compared to an average angle of 137.8° for the four equatorial ligands, and suggests the presence of a tridative azido ligand. The minor deviation of the observed axial Nb-N-N angle from the ideal 180° is attributed to solid state effects, because our theoretical calculations for the free gaseous molecule at the B3LYP and MP2 levels of theory with an SBKJ+(d) basis set resulted in Nb-N-N angles of 179.6° and 179.2°, respectively. Again, the rule of 12 [0 d electrons, 1 monodative ligand (CH₃CN), four bidative ligands (equatorial azides) and one tridative ligand (axial azide), corresponding to 0 + 1x1 + 4x2 + 1x3 = 12] is fulfilled.

The average Nb-N_{azide} distance of 1.997 Å in CH₃CN·Nb(N₃)₅ is significantly shorter than those of 2.081 Å and 2.105 Å found for the terminal azides of two isomers of  $[Cp*NbCl(N_3)(\mu-N_3)]_2(\mu-O)^{[16]}$  and 2.27 Å found for the cluster  $[Nb_6Br_{12}(N_3)_6]^{4}$ , but slightly longer than that of 1.92 Å found in  $[NbCl_5(N_3)]^{-}$  and is attributed to varying degrees of ionicity of the azide ligands in these compounds.

The reactions of the pentaazides with ionic azides, such as  $[P(C_6H_5)_4]^+N_3^-$ , in CH₃CN solution produce the corresponding  $[Nb(N_3)_6]^-$  and  $[Ta(N_3)_6]^-$  salts, respectively, [Eq. (4) (M = Nb, Ta].

$$M(N_3)_5 + [P(C_6H_5)_4]N_3 \longrightarrow [P(C_6H_5)_4][M(N_3)_6]$$
 (4)

The hexaazido metalates of niobium and tantalum were isolated as yellow-orange solids and are stable at room temperature. The compounds were characterized by the observed material balances, vibrational spectroscopy, and in the case of  $[P(C_6H_5)_4][Nb(N_3)_6]$  by its crystal structure. The observed vibrational spectra of  $[P(C_6H_5)_4][Nb(N_3)_6]$  and  $[P(C_6H_5)_4][Ta(N_3)_6]$  are shown in Figure 8 and 9, respectively, and their frequencies and intensities are given in Table 1 and the Experimental Section, respectively. The free gaseous  $Nb(N_3)_6$  anion is predicted to have perfect  $S_6$  ( $\equiv C_{3i}$ ) symmetry, which is quite rare, and, therefore, a complete vibrational analysis was carried out (Table 1).  $Ta(N_3)_6$  is slightly distorted from  $S_6$  to  $C_1$  symmetry, but its structure is almost identical to that of  $Nb(N_3)_6$ , and the splittings of its degenerate modes are extremely small (Table S5 of the Supplementary Material).

Because of the presence of a large counter-ion which serves as an inert spacer and suppresses detonation propagation, these salts are much less shock sensitive than neat Nb(N₃)₅ and Ta(N₃)₅, and are thermally surprisingly stable. Single crystals of  $[P(C_6H_5)_4][Nb(N_3)_6]$  were obtained by re-crystallization from CH₃CN. The salt crystallizes in the rare orthorhombic space group P2(1)2(1)2. The X-ray structure analysis^[40] of  $[P(C_6H_5)_4][Nb(N_3)_6]$  (Figure 10) reveals no significant cation-anion and anion-anion interactions. The closest Nb···N and N···N contacts between neighboring anions are 4.20 Å and 3.15 Å, respectively. The structure of the  $[Nb(N_3)_6]$  anion in the solid is only slightly distorted from the perfect S₆ symmetry, predicted by our theoretical calculations for the free gaseous anion, and is similar to those of  $[As(N_3)_6]^{-[28]}$ ,

[Sb(N₃)₆]^{-,[27]} [Si(N₃)₆]^{-[42]} [Ge(N₃)₆]^{-[43]} and [Ti(N₃)₆]^{2-,[1]} and contrary to that of [Te(N₃)₆]^{-[34]} which contains a sterically active free valence electron pair on its central atom. The average Nb-N distance of 2.027 Å in [Nb(N₃)₆]⁻ is larger than that of 1.997 Å found for CH₃CN·Nb(N₃)₅, as expected from the formal negative charge in the former which increases the ionic character of the azide ligands. The average Nb-N-N bond angle in [Nb(N₃)₆]⁻ amounts to 143 °, indicative of six bidative azido ligands. This in accord with the rule of 12, as [Nb(N₃)₆]⁻ possesses zero monodative and tridative ligands and Nb(+V) is a  $d^0$  center. The relatively large variation in the Nb-N-N bond angles, which range from 131.7 to156.2°, is attributed to intramolecular repulsion effects among the ligands.

### **Experimental Section**

Caution! Covalent azides are potentially hazardous and can decompose explosively under various conditions! The polyazides of this work are extremely shock-sensitive and can explode violently upon the slightest provocation. They should be handled only on a scale of less than 1 mmol. Because of the high energy content and high detonation velocities of these azides, their explosions are particularly violent and can cause, even on a one mmol scale, significant damage. The use of appropriate safety precautions (safety shields, face shields, leather gloves, protective clothing, such as heavy leather welding suits and ear plugs) is mandatory. Teflon containers should be used, whenever possible, to avoid hazardous shrapnel formation. The manipulation of these materials is facilitated by handling them, whenever possible, in solution to avoid detonation propagation, the use of large inert counter-ions as spacers, and anion formation which increases the partial negative charges on the terminal N_v atoms and thereby

reduces the  $N_{\beta}$ - $N_{\gamma}$  triple bond character. **Ignoring safety precautions can lead to serious** injuries!

Materials and Apparatus: All reactions were carried out in Teflon-FEP ampules that were closed by stainless steel valves. Volatile materials were handled in a Pyrex glass or stainless steel/Teflon-FEP vacuum line.^[44] All reaction vessels were passivated with ClF₃ prior to use. Nonvolatile materials were handled in the dry argon atmosphere of a glove box.

Raman spectra were recorded directly in the Teflon reactors in the range 4000–80 cm⁻¹ on a Bruker Equinox 55 FT-RA spectrophotometer, using a Nd-YAG laser at 1064 nm with power levels less than 50 mW(!). Infrared spectra were recorded in the range 4000-400 cm⁻¹ on a Midac, M Series, FT-IR spectrometer using KBr pellets. The pellets were prepared inside the glove box using an Econo mini-press (Barnes Engineering Co.) and transferred in a closed container to the spectrometer before placing them quickly into the sample compartment which was purged with dry nitrogen to minimize exposure to atmospheric moisture and potential hydrolysis of the sample.

The starting materials NbF₅, TaF₅ (both Ozark Mahoning) and  $[P(C_6H_5)_4]I$  (Aldrich) were used without further purification.  $(CH_3)_3SiN_3$  (Aldrich) was purified by fractional condensation prior to use. Solvents were dried by standard methods and freshly distilled prior to use.  $[P(C_6H_5)_4]N_3$  and  $[P(C_6H_5)_4]F$  were prepared from  $[P(C_6H_5)_4]I$  and stoichiometric amounts of AgN₃ and AgF, respectively, in aqueous solution, filtering off the precipitated AgI.

Preparation of  $M(N_3)_5$  (M = Nb, Ta): A sample of NbF₅ (0.55 mmol) or TaF₅ (0.59 mmol) was loaded into a Teflon-FEP ampule, followed by the addition of 1 g of SO₂ and (CH₃)₃SiN₃ (5.5 mmol) in vacuo at -196 °C. The mixture was warmed to -30 °C. After 2 hours,

the temperature was raised to -20  $^{\circ}$ C and all volatile material was pumped off, leaving behind solid M(N₃)₅.

Nb(N₃)₅: 0.175 g, expected for 0.55 mmol: 0.166 g; Raman (-80 °C):  $\tilde{v}$ =2155 [10.0], 2106 [5.5], ( $v_{as}$  N₃), 1385 [1.6], ( $v_{s}$  N₃), 628 [0.7], 590 sh, ( $\delta$  N₃), 427 sh, ( $v_{as}$  NbN₂ eq), 413 [3.2], ( $v_{s}$  NbN₃ eq), 360 sh, ( $v_{s}$  NbN₂ ax), 288 [0.7] ( $\delta$ _{sciss} NbN₃ eq), 234 [0.7] ( $\rho$  NbN₂ ax); infrared (KBr): 2124 vs, 2088 vs, ( $v_{as}$  N₃), 1374 m, 1347 s, ( $v_{s}$  N₃), 591 mw, 569 w, ( $\delta$  N₃), 450 sh, ( $v_{as}$  NbN₃ eq), 440 mw, ( $v_{as}$  NbN₂ ax), 422 w, ( $v_{as}$  NbN₂ eq).

Ta(N₃)₅: 0.247 g, expected for 0.59 mmol = 0.231 g). Raman (-80 °C):  $\tilde{v}$ =2182 [10.0], 2129 [3.3], (v_{as} N₃), 623 [1.1], 590 sh, (δ N₃), 450 sh, (v_{as} TaN₂ eq), 426 [2.5], (v_s TaN₃ eq), 390 sh, (v_s TaN₂ ax), 256 [1.7] (δ _{sciss} TaN₃ eq), 221 [2.0] (ρ TaN₂ ax); infrared (KBr): 2141 vs, 2103vs, (v_{as} N₃), 1403 ms, 1364 m, (v_s N₃), 613 mw, 578 w, (δ N₃), 410 mw, (v_{αs} TaN₂ ax).

In addition to these bands, the following weak infrared bands were observed which are attributed to overtones or combination bands:  $Nb(N_3)_5$ : 1667 w, 1263 w, 1195 sh, 1176 w, 1037 vvw, 696 w, 660 w;  $Ta(N_3)_5$ : 1669 w, 1508 vw, 1274 sh, 1252 w, 1203 w, 1180 sh, 1036 vw, 850 w, 712 w, 683 w.

Preparation of  $CH_3CN\cdot M(N_3)_5$  (M=Nb, Ta): A sample of NbF₅ (0.39 mmol) or TaF₅ (0.37 mmol) was loaded into a Teflon-FEP ampule, followed by the addition of 2 mL CH₃CN and (CH₃)₃SiN₃ (3.7 mmol) in vacuo at -196 °C. The mixture was warmed to -20 °C. After 2 hours, all volatile material was pumped off at this temperature, leaving behind solid CH₃CN·M(N₃)₅.

CH₃CN·Nb(N₃)₅: 0.129 g, expected for 0.39 mmol: 0.136 g. Raman (-80 °C):  $\tilde{\nu}$ =2928 [1.8], ( $\nu_s$ CH₃), 2315 [1.2], 2289 [1.1], ( $\nu$ CN), 2140 [10.0], 2121 [1.5], 2097 [1.9], 2090 [1.6], 2074 [2.2], 2058 [1.4], ( $\nu_a$ s N₃), 1415 [1.3], 1363 [1.2], 1351 [1.1], 1331 [1.1], ( $\delta$  CH₃) and ( $\nu_s$ 

N₃), 947 [1.0], (νCC), 620 [1.2], 610 [1.0], 599 [1.2], 580 [1.1], 566 [1.0], 557 [1.1], (δ N₃), 441 [3.1], 435 [2.8], 423 [1.7], 419 [1.7], 411 [2.0], (ν NbN_x), 281 [1.1], 266 [1.3], 256 [1.3], 248 [1.4], 226 [1.6], (δ NbN_x) 189 [1.3], 180 [1.3], 139 [1.6], 96 [2.9] (torsional modes).

CH₃CN·Ta(N₃)₅: 0.175 g, expected for 0.37 mmol: 0.161 g. Raman (-80 °C):  $\tilde{\nu}$ =2933 [1.7], ( $\nu_s$ CH₃), 2319 [0.5], 2291 [0.5], ( $\nu$ CN), 2172 [10.0], 2162 [1.2], 2123 [1.2], 2103 [1.1], ( $\nu_a$ s N₃), 1389 [0.4], 1361 [0.4], ( $\delta$  CH₃) and ( $\nu_s$  N₃), 948 [1.0], ( $\nu$ CC), 592 [0.3], ( $\delta$  N₃), 438 [2.1], 417 [0.6], ( $\nu$  NbN_x), 250 [0.7 266 [1.3], 226 [0.6], ( $\delta$  NbN_x), 192 [0.9], (torsional mode).

Preparation of  $[M(N_3)_6]^-$  salts (M = Nb, Ta): Neat PPh₄N₃ (0.25 mmol) was added to a frozen solution of  $M(N_3)_5$  (0.25 mmol) in CH₃CN (15 mmol) at -78 °C. The reaction mixture was warmed to -25 °C and occasionally agitated. After 2 hours, all volatiles were removed at ambient temperature in a dynamic vacuum, leaving behind the solid  $[M(N_3)_6]^-$  salts.

 $[P(C_6H_5)_4][Nb(N_3)_6]$ : orange solid, 0.160 g, expected for 0.25 mmol: 0.171 g. The IR and Raman spectra of  $Nb(N_3)_6$  are given in Table 1.

[P(C₆H₅)₄][Ta(N₃)₆]: pale yellow solid, 0.207 g, expected for 0.25 mmol: 0.193 g. Raman bands due to [Ta(N₃)₆]⁻ (-80 °C):  $\tilde{\nu}$ =2159 [10.0], 2111 [1.0], 2103 [1.0], 2091 [0.8], 2081 [0.7], (v_{as} N₃), 1355 [0.8], (v_s N₃), 609 [0.6], 582 [0.4], ( $\delta$  N₃), 437 [2.8], 372 [0.7], 364 [0.8], 353 [0.8], (v TaN₆), 225 [1.8], 215 [1.8], ( $\delta$  TaN₆), 168 [2.6], 160 [2.6], (torsions); infrared bands due to [Ta(N₃)₆]⁻ (KBr): 2124 vs, 2113 vs, 2096 vs, 2087 vs, (v_{as} N₃), 1383 m, 1372 m, 1360 ms, 1348 s, (v_s N₃), 648 vw, 615 m, 600 mw, 585 mw, 576 w, ( $\delta$  N₃), 433 w, 418 mw, 414 mw, (v TaN₆).

Theoretical Methods: The molecular structures, harmonic vibrational frequencies, and infrared and Raman vibrational intensities were calculated using second order perturbation theory (MP2, also known as MBPT(2)^[24]) and also at the DFT level using the B3LYP hybrid functional, [23a]

which included the VWN5 correlation functional.^[23b] The Stevens, Basch, Krauss, and Jasien (SBKJ) effective core potentials and the corresponding valence-only basis sets were used.^[25a] The SBKJ valence basis set for nitrogen was augmented with a d polarization function^[25b] and a diffuse s+p shell,^[25c] denoted as SBKJ+(d). Hessians (energy second derivatives) were calculated for the final equilibrium structures to verify them as local minima; i.e., having a positive definite Hessian. All calculations were performed using the electronic structure code GAMESS.^[45] Received: , 2004

**Keywords:** Crystal structure, hexaazidoniobate(V), hexaazidotantalate(V), niobium pentaazide, niobium pentaazide - acetonitrile adduct, tantalum pentaazide, tantalum pentaazide - acetonitrile adduct, vibrational spectra, binary Group 5 azides, theoretical calculations, linear metal-nitrogennitrogen bonds, rule of 12

#### References

- [1] R. Haiges, J. A. Boatz, S. Schneider, T. Schroer, K. O. Christe, *Angew. Chem. Int. Ed.* **2004**, *43*, 3148.
- [2] R. Haiges, J. A. Boatz, R. Bau, S. Schneider, T. Schroer, M. Yousufuddin, K. O. Christe, *Angew. Chem. Int. Ed. submitted*.
- [3] A. Kornath, Angew. Chem. Int. Ed. 2001, 40, 3135 and references cited therein.
- [4] K. Dehnicke, J. Strähle, Z. Anorg. Allg. Chem. 1965, 338, 287.
- [5] K. Dehnicke, J. Inorg. Nucl. Chem. **1965**, 27, 809.
- [6] J. Strähle, Z. Anorg. Allg. Chem. **1974**, 405, 139.
- [7] R. Choukroun, D. Gervais, *J. Chem. Soc., Dalton Trans.* **1980**, 1800.

- [8] U. Müller, R. Dübgen, K. Dehnicke, Z. Anorg. Allg. Chem. 1981, 473, 115.
- [9] a) W. Beck, E. Schuierer, P. Poellmann, W. P. Fehlhammer, Z. Naturforsch. B, 1966, 21, 811; b) W. Beck, W. P. Fehlhammer, P. Poellmann, E. Schuierer, K. Feldl, Chem. Ber. 1967, 100, 2335.
- [10] D. B. Sable, W. H. Armstrong, *Inorg. Chem.* **1992**, *31*, 161.
- [11] J. H. Espenson, J. R. Pladziewicz, *Inorg. Chem.* **1970**, *9*, 1380.
- [12] M. Kasper, R. Bereman, *Inorg. Nucl. Chem. Let.* **1974**, *10*, 443.
- [13] M. Herberhold, A.-M. Dietel, W. Milius, Z. Anorg. Allg. Chem. 1999, 625, 1885.
- [14] J. H. Osborne, A. L. Rheingold, W. C. Trogler, J. Am. Chem. Soc. 1985, 107, 7945.
- [15] M. Herberhold, A. Goller, W. Milius, Z. Anorg. Allg. Chem. 2003, 629, 1162.
- [16] M. Herberhold, A. Goller, W. Milius, Z. Anorg. Allg. Chem. 2003, 629, 1557.
- [17] M. Herberhold, A. Goller, W. Milius, Z. Anorg. Allg. Chem. 2001, 627, 891.
- [18] J. H. Meyer, Z. Anorg. Allg. Chem. **1995**, 621, 921.
- [19] O. Reckeweg, H.-J. Meyer, A. Simon, Z. Anorg. Allg. Chem. 2002, 628, 920.
- [20] H.-J. Meyer, Z. Anorg. Allg. Chem. **1995**, 621, 921.
- [21] R. Dübgen, U. Müller, F. Weller, K. Dehnicke, Z. Anorg. Allg. Chem. 1980, 471, 89.
- [22] A. M. Golub, H. Köhler, V. V. Stopenko, *Chemistry of Pseudohalides*, Elsevier, Amsterdam, **1986**.
- [23] a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648; P. J. Stephens, F. J. Devlin, C. F. Chablowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623; R. H. Hertwig, W. Koch, Chem. Phys. Lett. 1997, 268, 345.
  - b) S. H. Vosko, L. Wilk, M. Nusair, *Can. J. Phys.* **1980**, 58, 1200.

- [24] C. Moller, M. S. Plesset, *Phys. Rev.* **1934**, *46*, 618; J. A. Pople, J. S. Binkley, R. Seeger, *Int. J. Quantum Chem. S10*, **1976**, 1; M. J. Frisch, M. Head-Gordon, J. A. Pople, *Chem. Phys. Lett.* **1990**, *166*, 275; . J. Bartlett, D. M. Silver, *Int. J. Quantum Chem. Symp.* **1975**, *9*, 1927.
- [25] a) W. J. Stevens, H. Basch, M. Krauss, *J. Chem. Phys.* 1984, *81*, 6026; W. J. Stevens, M. Krauss, H. Basch, P. G. Jasien, *Can. J. Chem.* 1992, 70, 612.
  b) P. C. Hariharan, J. A. Pople, *Theoret. Chim. Acta* 1973, *28*, 213.
  c) T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von R. Schleyer, *J. Comput. Chem.* 1983, *4*, 294.
- [26] J. Drummond, J. S. Wood, J. Chem. Soc., Chem. Commun.. 1969, 1373.
- [27] R. Haiges, J. A. Boatz, A. Vij, V. Vij, M. Gerken, S. Schneider, T. Schroer, M. Yousufuddin, K. O. Christe, *Angew. Chem. Int. Ed.* **2004**, *43*, in press.
- [28] a) K. Karaghiosoff, T. M. Klapötke, B. Krumm, H. Nöth, T. Schütt, M. Suter, *Inorg. Chem.* **2002**, *41*, 170; b) T. M. Klapötke, H. Nöth, T. Schütt, M. Warchhold, *Angew. Chem. Int. Ed.* **2000**, *39*, 2108.
- [29] (a) R. J. Gillespie, I. Hargittai, *The VSEPR Model of Molecular Geometry*, Allyn and Bacon, A Division of Simon & Schuster, Inc.: Needham Heights, MA, 1991; (b) R. J. Gillespie, P. L. A. Popelier, *Chemical Bonding and Molecular Geometry: from Lewis to Electron Densities*, Oxford University Press, 2001.
- [30] L. Gagliardi, P. Pyykkoe, *Inorg. Chem.* **2003**, *42*, 3074.
- [31] U. Mueller, H. Baernighausen, Acta Crystallogr. 1970, B26, 1671.
- [32] W. Fraenk, T. Habereder, A. Hammerl, T. M. Klapoetke, B. Krumm, P. Mayer, H. Noeth,M. Warchhold, *Inorg. Chem.* 2001, 40, 1334.

- [33] T. M. Klapoetke, H. Noeth, T. Angew. Chem. Int. Ed. 2000, 39, 2108.
- [34] R. Haiges, J. A. Boatz, A. Vij, M. Gerken, S. Schneider, T. Schroer, K. O. Christe, *Angew. Chem. Int. Ed.* **2003**, *42*, 5847.
- [35] P. Nockemann, U. Cremer, U. Ruschewitz, G. Meyer, Z. Anorg. Allg. Chem. 2003, 629, 2079.
- [36] J. O. Jensen, Vibr. Spectrosc. 2003, 31, 227.
- Crystal data for  $C_2H_3N_{16}Nb$ :  $M_r = 344.11$ , monoclinic, space group  $P_2(1)/c$ , a =[37] 7.9805(12), b = 10.4913(16), c = 14.695(2) Å,  $\alpha = 90$ ,  $\beta = 96.353(2)$ ,  $\gamma = 90^{\circ}$ , V = 1222.8(3) Å³, F(000) = 672,  $\rho_{calcd}$ , (Z = 4) = 1.869 g·cm⁻³,  $\mu = 1.004$  mm⁻¹, approximate crystal dimensions 0.25 x 0.08 x 0.02 mm³,  $\theta$  range = 2.39 to 27.48°,  $Mo_{Ka}$  ( $\lambda = 0.71073$ Å), T = 163(2) K, 3392 measured data (Bruker 3-circle, SMART APEX CCD with  $\gamma$ -axis fixed at 54.74°, using the SMART V 5.625 program, Bruker AXS: Madison, WI, 2001), of which 839 ( $R_{int} = 0.0204$ ) unique. Lorentz and polarization correction (SAINT V 6.22 program, Bruker AXS: Madison, WI, 2001), absorption correction (SADABS program, Bruker AXS: Madison, WI, 2001). Structure solution by direct methods (SHELXTL 5.10, Bruker AXS: Madison, WI, 2000), full-matrix least-squares refinement on  $F^2$ , data to parameters ratio: 15.9 : 1, final R indices  $[I > 2\sigma(I)]$ : RI = 0.0341, wR2 = 0.0692, R indices (all data): R1 = 0.0546, wR2 = 0.0746, GOF on  $F^2 = 1.003$ . Further crystallographic details can be obtained from the Cambridge Crystallographic Data Centre (CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk) on quoting the deposition no. CCDC 246594.
- [38] B. v. Ahsen, B. Bley, S. Proemmel, R. Wartchow, H. Willner, F. Aubke, *Z. Anorg. Allg. Chem.* **1998**, *624*, 1225.

- [39] D. M. Byler, D. F. Shriver, *Inorg. Chem.* **1973**, *12*, 1412 and **1974**, *13*, 2697.
- Crystal data for  $C_{24}H_{20}N_{18}NbP$ :  $M_r = 684.46$ , orthorhombic, space group P2(1)2(1)2, a =[40] 18.480(3), b = 23.153(4), c = 6.7831(13) Å,  $\alpha = 90$ ,  $\beta = 90$ ,  $\gamma = 90^{\circ}$ , V = 2902.3(9) Å³, F(000) = 1384,  $\rho_{calcd}$  (Z = 4) = 1.566 g·cm⁻³,  $\mu = 0.521$  mm⁻¹, approximate crystal dimensions 0.33 x 0.05 x 0.04 mm³,  $\theta$  range = 1.41 to 27.51°, Mo_{Kg} ( $\lambda$  = 0.71073 Å), T = 133(2) K, 17936 measured data (Bruker 3-circle, SMART APEX CCD with χ-axis fixed at 54.74°, using the SMART V 5.625 program, Bruker AXS: Madison, WI, 2001), of which 6575 ( $R_{int} = 0.0597$ ) unique. Lorentz and polarization correction (SAINT V 6.22) program, Bruker AXS: Madison, WI, 2001), absorption correction (SADABS program, Bruker AXS: Madison, WI, 2001). Structure solution by direct methods (SHELXTL 5.10, Bruker AXS: Madison, WI, 2000), full-matrix least-squares refinement on  $F^2$ , data to parameters ratio: 16.5 : 1, final R indices  $[I>2\sigma(I)]$ : RI = 0.0518, wR2 = 0.0936, R indices (all data): R1 = 0.0858, wR2 = 0.1049, GOF on  $F^2 = 1.028$ . Further crystallographic details can be obtained from the Cambridge Crystallographic Data Centre (CCDC, 12 Union Road, Cambridge CB21EZ, UK (Fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk) on quoting the deposition no. CCDC 251934.
- [41] J. Weidlein, U. Mueller, K. Dehnicke, *Schwingungsspektroskopie*, Georg Thieme Verlag, Stuttgart-New York, **1982**, pg. 102.
- [42] A. C. Filippou, P. Portius, G. Schnakenburg, J. Am. Chem. Soc. 2002, 124, 12396.
- [43] A. C. Filippou, P. Portius, D. U. Neumann, K.-D. Wehrstedt, *Angew. Chem. Int. Ed.*2000, 39, 4333.
- [44] K. O. Christe, W. W. Wilson, C. J. Schack, R. D. Wilson, *Inorg. Synth.* 1986, 24, 39.

[45] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem. 1993, 14, 1347.

Table 1. Comparison of observed and unscaled calculated vibrational frequencies [cm $^{-1}$ ] and intensities for  $[Nb(N_3)_6]^{-[a]}$  in point group  $S_6$ 

		observe	Calculated (IR) [R		[Raman]
	description	IR	Ra	B3LYP/SBK+(d)	MP2/SBK+(d)
$\lambda_g \nu_1$	$\nu_{as}N_3$		2131 (10.0) 2112 (5.6)	2218 (0) [1428]	2129 (0) [1388]
$\nu_2$	$v_sN_3$		1342 (2.0)	1432 (0) [49]	1283 (0) [60]
$\nu_3$	$\delta N_3$		616 (2.8)	588 (0) [8.8]	565 (0) [39]
$V_4$	$\delta N_3$			580 (0) [2.2]	524 (0) [2.3]
$\nu_5$	$\nu_s NbN_6$		433 (5.3) 414 (4.8)	401 (0) [147]	402 (0) [367]
$\nu_6$	$\delta_s NbN_6$		225 (3.5)	249 (0) [13]	242 (0) [51]
$\nu_7$	τ			74 (0) [14]	72 (0) [31]
$\nu_8$	τ			34 (0) [37]	32 (0) [39]
$E_g \nu_9$	$\nu_{as}N_3$		2080 (2.1) 2060 (2.3)	2164 (0) [1063]	2146 (0) [110]
$\nu_{10}$	$v_sN_3$			1413 (0) [50]	1279 (0) [154]
$\nu_{11}$	$\delta N_3$			582 (0) [8.4]	550 (0) [73]
$\nu_{12}$	$\delta N_3$			580 (0) [0.63]	521 (0) [4.2]
$\nu_{13}$	$v_sNbN_6$		339 (2.7)	334 (0) [12]	350 (0) [38]
$\nu_{14}$	$\delta_s NbN_6$		217 (3.5)	238 (0) [34]	234 (0) [31]
$\nu_{15}$	τ			87 (0) [36]	89 (0) [92]
$\nu_{16}$	τ			36 (0) [69]	38 (0) [80]
$\Lambda_u \nu_{17}$	$\nu_{as}N_3$	2121 s 2080 vs		2185 (4084) [0]	2152 (2577) [0]
$\nu_{18}$	$v_sN_3$	1336 ms		1406 (677) [0]	1271 (338) [0]
$\nu_{19}$	$\delta N_3$	640 vw		580 (0.91) [0]	549 (100) [0]
$V_{20}$	$\delta N_3$	624 w		574 (49) [0]	505 (8.0) [0]
$\nu_{21}$	$v_{as}NbN_6$	409 mw		400 (536) [0]	418 (629) [0]
$\nu_{22}$	$\delta_{as}NbN_6$			276 (15) [0]	262 (31) [0]
$V_{23}$	τ NbN ₆			140 (2.8) [0]	114(0.48) [0]
$\nu_{24}$	τ			27 (0.006) [0]	29 (0.022) [0]
$\nu_{25}$	τ			24 (1.6) [0]	14 (0.37) [0]
$E_u V_{26}$	$\nu_{as}N_3$	2069 vs 2060 vs		2170 (4366) [0]	2141 (2681) [0]
$v_{27}$	$\nu_s N_3$	1361 m 1351 m		1409 (739) [0]	1278 (314) [0]
$\nu_{28}$	$\delta N_3$	600 w		577 (126) [0]	544 (94) [0]
$V_{29}$	$\delta N_3$	583 vw		570 (38) [0]	502 (8.2) [0]
$V_{30}$	$\nu_{as}NbN_{6}$	409 mw	382 (2.8)	391 (874) [0]	404 (1045) [0]
$\nu_{31}$	$\delta_{as}NbN_{6}$			233 (26) [0]	223 (30) [0]
$\nu_{32}$	$\delta_{wag/rock}NbN$		151 (4.3)	154 (13) [0]	128 (31) [0]
	6				
$\nu_{33}$	τ			36 (4.8) [0]	38 (3.1) [0]
$\nu_{34}$	τ			15 (1.6) [0]	6 (1.9) [0]

[[]a] Calculated IR and Raman intensities are given in km mol⁻¹ and  $\text{Å}^4$  amu⁻¹, respectively; observed spectra are for the solid  $\left[P(C_6H_5)_4\right]^+$  salt.

*Figure 1.* IR and Raman spectrum of solid  $Nb(N_3)_5$ . The band marked by an asterisk (*) is due to the Teflon-FEP sample tube.



*Figure 2.* IR and Raman spectra of  $Ta(N_3)_5$ . The band marked by an asterisk (*) is due to the Teflon-FEP sample tube.



*Figure 3.* Stuctures of  $Nb(N_3)_5$  and  $Ta(N_3)_5$  calculated at the B3LYP/SBKJ+(d) level of theory (MP2/SBKJ+(d) values in parentheses.)



**Figure 4.** Bonding schemes for transition metal azides (from top to bottom): (i) ionic azide, showing for didactic reasons the azide ion in one of its asymmetric resonance structures and only some of the empty  $s^2d^{10}$  orbitals on M; (ii) strongly bent two-center/monodative bond; (iii) moderately bent two-center/bidative bond; (iv) linear two-center/tridative bond.



*Figure 5.* Raman spectrum of solid  $CH_3CN\cdot Nb(N_3)_5$ . The band marked by an asterisk (*) is due to the Teflon-FEP sample tube.



*Figure 6.* Raman spectrum of solid  $CH_3CN \cdot Ta(N_3)_5$ . The band marked by an asterisk (*) is due to the Teflon-FEP sample tube.



*Figure 7.* ORTEP drawing of CH₃CN·Nb(N₃)₅·. Thermal ellipsoids are shown at the 50% probability level. Selected bond lengths [Å] and angles [°]: Nb-N1 2.031(3), Nb-N4 1.998(3), Nb-N7 2.004(3), Nb-N10 2.017(3), Nb-N13 1.935(3), Nb-N16 2.259(3), N1-N2 1.217(4), N2-N3 1.139(4), N4-N5 1.212(4), N5-N6 1.133(4), N7-N8 1.212(4), N8-N9 1.129(4), N10-N11 1.211(4), N11-N12 1.132(4), N13-N14 1.205(4), N14-N15 1.137(4), N16-C1 1.139(4), C1-C2 1.447(5), N1-Nb-N4 87.55(12), N1-Nb-N7 165.51(11), N1-Nb-N10 82.89(12), N1-Nb-N13 99.16(12), N1-Nb-N16 84.59(10), N4-Nb-N7 93.90(12), N4-Nb-N10 162.91(12), N4-Nb-N13 96.38(12), N4-Nb-N16 81.15(10), N7-Nb-N10 91.93(11), N7-Nb-N13 95.01(12), N7-Nb-N16 81.40(11), N10-Nb-N13 99.11(12), N10-Nb-N16 83.86(10), N13-Nb-N16 175.45(11), Nb-N1-N2 132.7(2), Nb-N4-N5 141.9(2), Nb-N7-N8 144.1(2), Nb-N10-N11 132.3(2), Nb-N13-N14 168.8(2).



*Figure 8.* IR and Raman spectra of  $[PPh_4][Nb(N_3)_6]$ . The bands belonging to the  $[Nb(N_3)_6]^-$  ion are marked with a diamond (•).



**Figure 9.** IR and Raman spectra of  $[PPh_4][Ta(N_3)_6]$ . The bands belonging to the  $[Ta(N_3)_6]^-$  ion are marked with a diamond ( $\blacklozenge$ ). The band marked by an asterisk (*) is due to the Teflon-FEP sample tube.



*Figure 10.* ORTEP drawing of the anionic part of the crystal structure of [P(C₆H₅)₄][Nb(N₃)₆]. Thermal ellipsoids are shown at the 50% probability level. Selected bond lengths [Å] and angles [°]: Nb-N1 2.078(5), Nb-N4 2.035(4), Nb-N7 1.989(4), Nb-N10 2.008(4), Nb-N13 2.032(4), Nb-N16 2.026(5), N1-N2 1.164(5), N2-N3 1.126(6), N4-N5 1.198(5), N5-N6 1.128(5), N7-N8 1.192(5), N8-N9 1.133(5), N10-N11 1.196(5), N11-N12 1.118(5), N13-N14 1.203(6), N14-N15 1.137(6), N16-N17 1.173(6), N17-N18 1.137(6), N1-Nb-N4 89.54(19), N1-Nb-N7 173.25(18), N1-Nb-N10 94.23(18), N1-Nb-N13 80.45(18), N1-Nb-N16 85.2(2), N4-Nb-N7 86.30(18), N4-Nb-N10 174.15(18), N4-Nb-N13 95.40(15), N4-Nb-N16 86.78(17), N7-Nb-N10 90.34(17), N7-Nb-N13 94.63(17), N7-Nb-N16 99.86(19), N10-Nb-N13 89.63(18), N10-Nb-N16 89.1(2), N13-Nb-N16 165.46(18), Nb-N1-N2 134.4(4), Nb-N4-N5 141.2(4), Nb-N7-N8 156.2(4), Nb-N10-N11 152.3(4), Nb-N13-N14 131.7(4), Nb-N16-N17 142.3(4).



## Synopsis

R. Haiges*, Jerry A. Boatz, T. Schroer, Muhammed Yousufuddin, K. O. Christe*

Experimental Evidence for Linear Metal-Azide Bonds. The Binary Group 5 Azides  $Nb(N_3)_5$ ,  $Ta(N_3)_5$ ,  $[Nb(N_3)_6]^T$  and  $[Ta(N_3)_6]^T$ , and 1:1 Adducts of  $Nb(N_3)_5$  and  $Ta(N_3)_5$  with  $CH_3CN$ 

The first examples of binary azides with linear metal-N-N bonds have been prepared and characterized. The occurrence of linear metal-N-N bonds can be explained by the  $\alpha$ -nitrogen atom of the azido group acting as a tridative ligand and the tendency of the transition metal centers seeking a filled  $s^2d^{10}$  electron shell.



 $CH_3CN\cdot Nb(N_3)_5$ 

# **Supplementary Material**

Experimental Evidence for Linear Metal-Azide Bonds. The Binary Group 5 Azides  $Nb(N_3)_5$ ,  $Ta(N_3)_5$ ,  $[Nb(N_3)_6]^T$  and  $[Ta(N_3)_6]^T$ , and 1:1 Adducts of  $Nb(N_3)_5$  and  $Ta(N_3)_5$  with  $CH_3CN^{**}$ 

Ralf Haiges*, Jerry A. Boatz, Thorsten Schroer, Muhammed Yousufuddin, and Karl O. Christe*

Table S1. Comparison of observed and unscaled calculated vibrational frequencies [cm $^{-1}$ ] and intensities for Nb(N₃)₅.

Table S2. Comparison of observed and unscaled calculated vibrational frequencies [cm $^{-1}$ ] and intensities for  $Ta(N_3)_5$ .

Table S3. Comparison of observed and unscaled calculated vibrational frequencies [cm⁻¹] and intensities for CH₃CN·Nb(N₃)₅.

Table S4. Comparison of observed and unscaled calculated vibrational frequencies [cm $^{-1}$ ] and intensities for CH₃CN·Ta(N₃)₅.

Table S5. Comparison of observed and unscaled calculated vibrational frequencies [cm $^{-1}$ ] and intensities for [Ta(N₃)₆] $^{-}$ .

[*] Dr. R. Haiges, Dr. T. Schroer, M. Yousufuddin, Prof. Dr. K. O. Christe

Loker Research Institute and Department of Chemistry

University of Southern California

Los Angeles, CA 90089-1661 (USA)

Fax: (+1) 213-740-6679

E-mail: haiges@usc.edu, kchriste@usc.edu

Dr. J. A. Boatz

Space and Missile Propulsion Division

Air Force Research Laboratory (AFRL/PRSP)

10 East Saturn Boulevard, Bldg 8451

Edwards Air Force Base, CA 93524 (USA)

[**] This work was funded by the Air Force Office of Scientific Research and the National Science Foundation. We thank Prof. Dr. G. A. Olah, and Dr. M. Berman, for their steady support, and Prof. Dr. R. Bau and Drs. S. Schneider and R. Wagner for their help and stimulating discussions.

Table S1. Comparison of observed  $^{[a]}$  and unscaled calculated vibrational frequencies  $[cm^{-1}]$  and intensities  $^{[b]}$  for  $Nb(N_3)_5$ 

description  V _{as} N ₃ V _s N ₃ N _s	2124 vs 2088 vs 1374 m 1347 s	Ra 2155 [10.0] 2106 [5.5] 1385 [1.6]	B3LYP/SBK+(d)  2235 (62) [1340] 2209 (2722) [241] 2204 (1124) [250] 2200 (816) [306] 2179 (343) [210] 1435 (172) [117] 1403 (611) [31] 1375 (252) [8.4] 1364 (453) [3.9] 1337 (350) [4.4] 598 (5.6) [2.8]	MP2/SBK+(d)  2063 (806) [590] 2074 (1918) [141] 2061 (1261) [34] 2059 (391) [246] 2044 (415) [28] 1319 (36) [17] 1312 (319) [16] 1294 (122) [20] 1292 (206) [46] 1263 (111) [21]
$\begin{array}{c} v_{as}N_3 \\ v_{as}N_3 \\ v_{as}N_3 \\ v_{as}N_3 \\ v_{sN_3} \\ \delta N_3 \end{array}$	2088 vs 1374 m	2106 [5.5]	2209 (2722) [241] 2204 (1124) [250] 2200 (816) [306] 2179 (343) [210] 1435 (172) [117] 1403 (611) [31] 1375 (252) [8.4] 1364 (453) [3.9] 1337 (350) [4.4]	2074 (1918) [141] 2061 (1261) [34] 2059 (391) [246] 2044 (415) [28] 1319 (36) [17] 1312 (319) [16] 1294 (122) [20] 1292 (206) [46]
$\begin{array}{c} v_{as}N_3 \\ v_{as}N_3 \\ v_{as}N_3 \\ v_{s}N_3 \\ v_{s}N_3 \\ v_{s}N_3 \\ v_{s}N_3 \\ v_{s}N_3 \\ v_{s}N_3 \\ \delta N_3 \end{array}$	2088 vs 1374 m		2204 (1124) [250] 2200 (816) [306] 2179 (343) [210] 1435 (172) [117] 1403 (611) [31] 1375 (252) [8.4] 1364 (453) [3.9] 1337 (350) [4.4]	2061 (1261) [34] 2059 (391) [246] 2044 (415) [28] 1319 (36) [17] 1312 (319) [16] 1294 (122) [20] 1292 (206) [46]
$\begin{array}{l} v_{as}N_3 \\ v_{as}N_3 \\ v_sN_3 \\ v_sN_3 \\ v_sN_3 \\ v_sN_3 \\ v_sN_3 \\ v_sN_3 \\ \delta N_3 \end{array}$	1374 m		2200 (816) [306] 2179 (343) [210] 1435 (172) [117] 1403 (611) [31] 1375 (252) [8.4] 1364 (453) [3.9] 1337 (350) [4.4]	2059 (391) [246] 2044 (415) [28] 1319 (36) [17] 1312 (319) [16] 1294 (122) [20] 1292 (206) [46]
$\begin{array}{l} v_{as}N_3 \\ v_{as}N_3 \\ v_sN_3 \\ v_sN_3 \\ v_sN_3 \\ v_sN_3 \\ v_sN_3 \\ v_sN_3 \\ \delta N_3 \end{array}$			2179 (343) [210] 1435 (172) [117] 1403 (611) [31] 1375 (252) [8.4] 1364 (453) [3.9] 1337 (350) [4.4]	2044 (415) [28] 1319 (36) [17] 1312 (319) [16] 1294 (122) [20] 1292 (206) [46]
$\begin{array}{l} v_s N_3 \\ \delta N_3 \end{array}$		1385 [1.6]	1435 (172) [117] 1403 (611) [31] 1375 (252) [8.4] 1364 (453) [3.9] 1337 (350) [4.4]	1319 (36) [17] 1312 (319) [16] 1294 (122) [20] 1292 (206) [46]
$\begin{array}{c} v_s N_3 \\ \delta N_3 \end{array}$		1385 [1.6]	1403 (611) [31] 1375 (252) [8.4] 1364 (453) [3.9] 1337 (350) [4.4]	1312 (319) [16] 1294 (122) [20] 1292 (206) [46]
$\begin{array}{l} \nu_s N_3 \\ \nu_s N_3 \\ \nu_s N_3 \\ \delta N_3 \end{array}$			1375 (252) [8.4] 1364 (453) [3.9] 1337 (350) [4.4]	1294 (122) [20] 1292 (206) [46]
ν _s N ₃ ν _s N ₃ δN ₃ δN ₃ δN ₃ δN ₃	1347 s		1364 (453) [3.9] 1337 (350) [4.4]	1292 (206) [46]
$v_sN_3$ $\delta N_3$ $\delta N_3$ $\delta N_3$ $\delta N_3$	1347 s		1337 (350) [4.4]	
$\begin{array}{l} \delta N_3 \\ \delta N_3 \\ \delta N_3 \\ \delta N_3 \end{array}$			· / L 3	1263 (111) [21]
$\begin{array}{l} \delta N_3 \\ \delta N_3 \\ \delta N_3 \end{array}$			598 (5.6) [2.8]	
$\begin{array}{c} \delta N_3 \\ \delta N_3 \end{array}$			272 (2.0) [ <del>2</del> .0]	596 (5.8) [10]
$\delta N_3$			587 (0.75) [5.8]	575 (83) [2.6]
		628 [0.7]	583 (57) [90]	567 (79) [3.4]
CAI			580 (48) [2.5]	558 (115) [0.5]
$\delta N_3$		590 sh	580 (51) [0.22]	533 (3.6) [0.39]
$\delta N_3$	591 mw		579 (84) [6.6]	552 (39) [23]
$\delta N_3$			571 (9.7) [77]	521 (4.8) [1.6]
$\delta N_3$	569 w		567 (1.3) [2.1]	519 (6.5) [1.3]
$\delta N_3$			559 (4.2) [0.63]	506 (0.25) [2.3]
$\delta N_3$			552 (2.8) [1.2]	499 (6.4) [3.1]
$v_{as}MN_3$ eq	450 sh		472 (164) [5.0]	468 (159) [7.8]
$v_{as}MN_2 ax$	440 mw		463 (228) [2.9]	466 (247) [9.6]
$v_{as}MN_2$ eq	422 w	427 sh	444 (202) [14]	455 (301) [14]
$v_sMN_3$ eq		413 [3.2]	424 (100) [39]	416 (18) [238]
$v_sMN_2$ ax		360 sh	363 (0.63) [15]	372 (0.07) [42]
$\delta_{umbrella}MN_3$		288 [0.7]	285 (9.4) [29]	281 (8.8) [25]
$\delta_{sciss}MN_3$			266 (1.4) [6.3]	253 (0.37) [11]
$\delta_{sciss}MN_3$			243 (2.1) [16]	252 (1.2) [31]
$\rho MN_2$			227 (0.21) [1.2]	212 (0.003) [5.6]
$\rho MN_2$		234 [0.7]	208 (10) [36]	192 (8.6) [35]
$\delta_{sciss}MN_2$			143 (0.48) [13]	153 (0.36) [13]
$\delta_{sciss}MN_2$			134 (0.06) [1.9]	146 (0.11) [4.4]
τ			103 (0.03) [6.5]	101 (0.11) [4.4]
τ			100 (0.56) [7.2]	101 (1.9) [19]
τ			90 (0.13) [0.99]	89 (0.13) [3.7]
τ			57 (0.34) [15]	68 (0.33) [7.2]
τ			53 (1.1) [6.3]	48 (1.1) [10]
τ			45 (0.008) [13]	40 (0.05) [16]
τ			43 (0.44) [23]	39 (0.17) [29]
τ			41 (0.25) [20]	32 (0.012) [20]
τ			29 (0.67) [16] 18 (0.45) [1.7]	27 (0.44) [26] 6 (0.61) [8.3]

[a] In addition to the bands listed in this table, the following weak infrared bands were observed which are attributed to overtones or combination bands: 1667 w, 1263 w, 1195 sh, 1176 w, 1037 vvw, 696 w, 660 w. [b] Calculated IR and Raman intensities are given in km mol⁻¹ and Å⁴ amu⁻¹.

Table S2. Comparison of observed  $^{[a]}$  and unscaled calculated vibrational frequencies  $[cm^{-1}]$  and intensities  $^{[b]}$  for  $Ta(N_3)_5$ 

A	observed description IR Ra		ved Ra	calculated (infrared) [Raman]	MP2/SBK+(d)
a	escription	IR	ĸa	B3LYP/SBK+(d)	WIF2/SDK+(0)
ı ν _ε	$_{as}N_3$		2182 [10.0]	2260 (43) [1109]	2134 (696) [316]
	$_{\rm as}N_3$	2141 vs		2233 (3271) [125]	2132 (2089) [139]
	$_{as}N_3$		2129 [3.3]	2217 (895) [259]	2097 (823) [53]
4 V _ε	$_{\rm as}N_3$	2103 vs		2214 (1202) [170]	2086 (1230) [10]
5 V _ε	$_{as}N_3$			2210 (319) [246]	2085 (673) [48]
6 V _s	$_{\rm s}{ m N}_{ m 3}$			1473 (7.2) [21]	1348 (29) [88]
$_{7}$ $\nu_{s}$	$_{\rm s}{ m N}_{ m 3}$	1403 ms		1451 (857) [19]	1334 (368) [6.5]
8 V ₅	$_{\rm s}N_3$			1389 (15) [7.9]	1314 (124) [60]
9 V _s	$_{\rm s}N_3$	1364 m		1375 (615) [5.7]	1303 (149) [34]
10 Vs	$_{\rm s}{ m N}_{\rm 3}$			1370 (450) [10]	1299 (198) [51]
	$N_3$			600(2.0) [1.5]	566 (1.6) [0.61]
₁₂ δ1	$N_3$		623 [1.1]	599 (1.2) [15]	562 (0.98) [1.7]
₁₃ δ1	$N_3$	613 mw		586 (13) [0.34]	547 (54) [0.10]
₁₄ δ1	$N_3$			583 (19) [13]	545 (21) [10]
₁₅ δ1	$N_3$		590 sh	576 (2.7) [66]	550 (1.2) [24]
₁₆ δ1	$N_3$			572 (18) [0.59]	543 (0.59) [1.4]
₁₇ δ1	$N_3$			565 (37) [1.7]	538 (1.1) [0.12]
₁₈ δ1	$N_3$	578 w		563 (62) [9.8]	539 (18) [8.2]
₁₉ δ1	$N_3$			560 (9.9) [1.7]	530 (16) [0.08]
₂₀ δ1	$N_3$			552 (4.7) [311]	532 (27) [0.42]
21 Va	_{as} MN ₃ eq		450 sh	444 (137) [6.5]	443 (188) [4.0]
22 V	$_{as}MN_2 ax$			442 (149) [1.4]	445 (167) [1.7]
23 V	$_{as}MN_2$ eq		426 [2.5]	439 (29) [38]	431 (4.3) [172]
24 Vs	sMN ₃ eq	410 mw		388 (265) [9.1]	391 (349) [7.1]
25 V _s	$_{\rm s}MN_2 ax$		390 sh	360 (12) [47]	359 (2.9) [53]
$\delta_{\iota}$	umbrellaMN ₃			288 (10) [3.2]	282 (11) [4.1]
$\delta_{\rm s}$	$_{sciss}MN_3$			268 (9.8) [10]	255 (20) [5.9]
$\delta_{\rm s}$	$_{sciss}MN_3$		256 [1.7]	258 (5.5) [63]	259 (1.6) [16]
₂₉ ρ	$MN_2$			253 (3.7) [0.23]	238 (7.5) [0.08]
₃₀ ρ	$MN_2$		221 [2.0]	207 (22) [21]	189 (22) [4.6]
$\delta_{\rm s}$	$_{sciss}MN_2$			150 (0.18) [5.0]	149 (0.85) [8.9]
$\delta_{\rm s}$	$_{sciss}MN_2$			123 (1.5) [160]	141 (1.5) [11]
33 τ				109 (0) [3.6]	115 (0.006) [2.4]
34 τ				101 (0.10) [8.4]	94 (0.11) [13]
35 τ				100 (0.11) [11]	93 (0.07) [23]
36 τ				48 (1.0) [2.6]	42 (0.62) [6.7]
₃₇ τ				47 (0.002) [13]	44 (0.07) [11]
₃₈ τ				40 (0.36) [47]	35 (0.29) [28]
39 τ				40 (0.11) [21]	33 (0.19) [15]
40 τ				39 (0.13) [17]	35 (0.005) [24]
41 τ				21 (0.65) [0.65]	12 (0.80) [0.73]
42 τ				17 (0.70) [3.4]	9 (0.91) [2.2]

[a] In addition to the bands listed in this table, the following weak infrared bands were observed which are attributed to overtones or combination bands: 1669 w, 1508 vw, 1274 sh, 1252 w, 1203 w, 1180 sh, 1036 vw, 850 w, 712 w, 683 w. [b] Calculated IR and Raman intensities are given in km mol⁻¹ and Å⁴ amu⁻¹.

Table S3. Comparison of observed and unscaled calculated [a] vibrational frequencies [cm $^{-1}$ ] and intensities for CH₃CN·Nb(N₃)₅

	4	observed	calculated (infrar	
	description	Ra	B3LYP/SBK+(d)	MP2/SBK+(d)
$\nu_{l}$	$v_sCH_3$	2928 (1.8)	3111 (1.1) [54]	3180 (1.8) [32]
$v_2$	$v_{as}CH_3$	, ,	3110 (1.2) [52]	3179 (1.7) [56]
$v_3$	$v_{as}CH_3$		3005 (0.82) [192]	3051 (0.83) [173]
$\nu_4$	νCN	2315 (1.2) 2289 (1.1)	2378 (75) [138]	2218 (22) [62]
$\nu_5$	$v_{as}N_3$	2140 (10.0)	2238 (751) [1019]	2168 (624) [67]
$\nu_6$	$\nu_{as}N_3$	2121 (1.5)	2202 (1935) [364]	2131 (770) [16]
$v_7$	$v_{as}N_3$	2097 (1.9)	2176 (1528) [163]	2129 (514) [45]
$\nu_8$	$v_{as}N_3$	2090 (1.6)	2176 (1527) [163]	2102 (732) [609]
$\nu_9$	$v_{as}N_3$	2074 (2.2) 2058 (1.4)	2153 (0.11) [205]	2100 (1690) [88]
$\nu_{10}$	$v_sN_3$		1473 (470) [12]	1460 (17) [8.7]
$\nu_{11}$	$\delta_{sciss}CH_3$	1415 (1.3)	1434 (14) [7.7]	1460 (11) [4.7]
$\nu_{12}$	$\delta_{sciss}CH_3$		1434 (14) [7.6]	1404 (6.6) [8.7]
$\nu_{13}$	$v_sN_3$	1351 (1.1)	1413 (246) [4.3]	1345 (252) [35]
$v_{14}$	$v_sN_3$	1331 (1.1)	1394 (374) [2.2]	1294 (29) [22]
$v_{15}$	$v_sN_3$		1394 (379) [2.3]	1288 (160) [11]
$\nu_{16}$	$v_sN_3$		1391 (6.5) [4.0]	1276 (35) [22]
$v_{17}$	$\delta_s CH_3$	1363 (1.2)	1375 (4.9) [16]	1274 (130) [16]
$\nu_{18}$	$\delta_{\text{rock}}\text{CH}_3$		1046 (0.78)[0.10]	1068 (0.42) [0.67]
$v_{19}$	$\delta_{\text{wag}}\text{CH}_3$	a	1046 (0.82) [0.10]	1066 (1.4) [0.69]
$v_{20}$	νCC	947 (1.0)	934 (8.0) [5.6]	954 (12) [2.7]
$\nu_{21}$	$\delta N_3$	620 (1.2)	609 (5.4) [1.7]	612 (14) [15]
$v_{22}$	$\delta N_3$	610 (1.0)	598 (63) [2.9]	595 (22) [11]
$v_{23}$	$\delta N_3$	500 (1.0)	598 (63) [2.9]	594 (111) [8.5]
$v_{24}$	$\delta N_3$	599 (1.2)	594 (0.61) [0.12]	583 (92) [12]
$v_{25}$	$\delta N_3$	580 (1.1)	573 (0.006) [0.05]	519 (3.1) [0.31]
$v_{26}$	$\delta N_3$	566 (1.0)	565 (19) [0.50]	516 (0.46) [0.69]
$v_{27}$	$\delta N_3$		565 (20) [0.53]	511 (1.5) [4.9]
$v_{28}$	$\delta N_3$	557 (1.1)	564 (1.1) [0.03]	509 (6.2) [2.5]
$V_{29}$	$\delta N_3$	557 (1.1)	557 (12) [1.0]	495 (3.2) [0.88]
$V_{30}$	$\delta N_3$		557 (12) [1.0]	487 (15) [0.44]
$v_{31}$	δN-C-C		456 (21) [0.12]	461 (233) [27]
$v_{32}$	δN-C-C	441 (2.1)	456 (22) [0.12]	454 (261) [1.1]
$v_{33}$	vNbN _{ax}	441 (3.1)	444 (224) [31]	451 (272) [17]
$v_{34}$	$v_{as}NbN_4$	435 (2.8)	427 (278) [1.5]	429 (14) [4.0]
$v_{35}$	$v_{as}NbN_4$	423 (1.7)	427 (277) [1.5] 411 (0.025) [87]	428 (20) [81] 418 (20) [174]
V ₃₆	V _{sym} NbN _{4 i p}	419 (1.7) 411 (2.0)	352 (0) [3.6]	372 (6.1) [2.9]
$v_{37}$	V _{sym} NbN _{4 oo p}	` ′	296 (.006) [1.4]	294 (14) [1.5]
V ₃₈	vNbN _{CH3CN}	281 (1.1) 266 (1.3)	278 (17) [0.63]	265 (8.8) [1.2]
V ₃₉	$\delta_{as}NbN_4 \ \delta_{as}NbN_4$	256 (1.3)	278 (17) [0.63]	262 (15) [15]
V ₄₀	$\delta_{as}$ NbN ₅	248 (1.4)	255 (0.02) [23]	247 (0.50) [15]
V ₄₁	$\delta NbN_5$	226 (1.6)	221 (0.64) [2.1]	232 (1.2) [19]
V ₄₂ V ₄₃	$\delta NbN_5$	-20 (1.0)	221 (0.66) [2.1]	224 (2.2) [1.7]
V43 V44	δ _{CH3CN-NbN5}		203 (0.10) [0.34]	202 (4.8) [6.5]
V44 V45	δ _{CH3CN-NbN5}		203 (0.09) [0.36]	190 (0.01) [2.7]
V ₄₅	$\delta NbN_5$	189 (1.3)	200 (0.09) [2.7]	182 ).96) [12]
V ₄₆ V ₄₇	$\delta NbN_5$	180 (1.3)	183 (0) [16]	164 (0.01) [4.3]
$v_{47}$ $v_{48}$	τ	139 (1.6)	119 (0.70) [6.6]	117 (0.28) [14]
V ₄₉	τ	96 (2.9)	118 (0.68) [6.6]	115 (1.1)[13]
V ₅₀	τ	` /	83 (0) [0]	64 (2.7) [16]
V ₅₁	τ		52 (3.3) [31]	62 (0.05) [0.81]
V ₅₂	τ		48 (0.004) [24]	59 (0.11) [9.1]
V ₅₃	τ		38 (0.009) [16]	55 (1.7) [31]
V ₅₄	τ		34 (2.1) [1.7]	48 (0.48) [1.9]
V ₅₅	τ		34 (2.0) [1.9]	39 (1.5) [7.3]
V ₅₆	τ		29 (1.6) [3.4]	31 (1.9) [3.7]
V57	τ		28 (1.7) [3.3]	26 (0.49) [16]

$\nu_{58}$	τ	12 (0.11) [145]	25 (0.89) [16]
V ₅₉	τ	9 (0.11) [15]	20 (0.55) [13]
$\nu_{60}$	unhindered	13i (0.04) [0.01]	16 (0.008) [19]
	СН3 т		

[a] Calculated IR and Raman intensities are given in km mol⁻¹ and Å⁴ amu⁻¹, respectively. The given assignments of the observed frequencies are for the calculated B3LYP frequencies. The MP2 values have not been matched with either the B3LYP values or the observed spectrum.

Table S4. Comparison of observed and unscaled calculated [a] vibrational frequencies [cm $^{-1}$ ] and intensities for CH $_3$ CN $\cdot$ Ta(N $_3$ ) $_5$ 

	description	observed	calculated (infrared) [Raman] B3LYP/SBK+(d)	MP2/SBK+(d)
Vı	v _s CH ₃	Ra	3109 (1.3) [56]	3181 (1.6) [46]
V ₁	v _s CH ₃ v _{as} CH ₃		3109 (1.3) [55]	3179 (2.0) [40]
$v_2$ $v_3$	v _{as} CH ₃	2933 [1.7]	3004 (0.96) [202]	3051 (0.71) [166]
$v_3$ $v_4$	vCN	2319 [0.5]	2383 (74) [166]	2235 (23) [79]
V ₅	vCN	2291 [0.5]	2222(2045) [360]	2168 (1157) [5.2]
$v_6$	$v_{as}N_3$	2172 [10.0]	2260 (655) [1025]	2154 (128) [363]
ν ₇	$v_{as}N_3$	2162 [1.2]	2195 (1739) [125]	2167 (1155) [4.6]
ν ₈	$v_{as}N_3$	2123 [1.2]	2195 (1735) [125]	2168 (1157) [5.2]
ν ₉	$v_{as}N_3$	2103 [1.1]	2173 (0.007) [181]	2137 (2378) [92]
$v_{10}$	$v_sN_3$	. ,	1487 (428) [28]	1462 (13) [7.1]
$v_{11}$	$\delta_{sciss}CH_3$	1389 [0.4]	1434 (15) [8.2]	1460 (15) [7.1]
$\nu_{12}$	$\delta_{sciss}CH_3$		1433 (15) [8.4]	1404 (4.1) [9.2]
$\nu_{13}$	$v_sN_3$		1432 (264) [29]	1364 (260) [69]
$\nu_{14}$	$v_sN_3$		1410 (417) [6.8]	1318 (59) [42]
$\nu_{15}$	$\nu_s N_3$		1410 (418) [6.9]	1307 (110) [48]
$\nu_{16}$	$v_sN_3$		1409 (0.08)[12]	1301 (181) [27]
$\nu_{17}$	$\delta_s CH_3$	1361 [0.4]	1374 (3.7) [16]	1298 (89) [44]
$\nu_{18}$	$\delta_{rock}CH_3$		1046 (0.91) [0.055]	1067 ( 0.41) [0.33]
$\nu_{19}$	$\delta_{wag}CH_3$		1046 (0.93) [0.082]	1067 (0.4) [0.33]
$\nu_{20}$	νCC	948 [0.3]	935 (7.5) [15]	958 (12) [3.5]
$\nu_{21}$	$\delta N_3$		608 (5.7) [1.2]	592 (2.1) [11]
$\nu_{22}$	$\delta N_3$		596 (29) [1.7]	572 (50) [7.1]
$v_{23}$	$\delta N_3$	500 50 03	596 (28) [1.7]	576 (4.0) [7.3]
$v_{24}$	$\delta N_3$	592 [0.3]	593 (0.09) ) [28]	572 (46) ) [6.6]
$v_{25}$	$\delta N_3$		585 (0.03) [0]	535 (12) [0.37]
$v_{26}$	$\delta N_3$		584 (1.5) [0.06]	529 (0.10) [0.35]
$v_{27}$	$\delta N_3$		584 (41) [0.28]	534 (12) [0.30]
$V_{28}$	$\delta N_3$		584 (43) [0.26]	529 (1.6) [0.06]
V ₂₉	$\delta N_3$		578 (0.11) [1.6] 578 (0.19) [1.6]	523 (3.8) [0.28] 523 (2.8) [0.32]
V ₃₀	$\delta N_3$		471 (1.8) [0.82]	439 (7.1) [0.05]
V ₃₁	δN-C-C δN-C-C		471 (1.9) [0.82]	440 (16) [23]
V ₃₂	$vNbN_{ax}$	438 [2.1]	424 (0.53) [83]	433 (21) [69]
V ₃₃	$v_{as}NbN_4$	417 [0.6]	410 (170) [20]	413 (188) [100]
$v_{34} = v_{35}$	$v_{as}NbN_4$	417 [0.0]	398 (242) [0.27]	411 (268) [3.0]
V ₃₆	$v_{\text{as}}$ NbN _{4 i p}		398 (242) [0.26]	412 (272) [0.67]
V36 V37	$v_{\text{sym}}NbN_{4 \text{ oo p}}$		366 (0) [1.3]	382 (0.32) [3.1]
V ₃₈	vNbN _{CH3CN}		303 (0) [2.1]	297 (0.06) [0.37]
V ₃₈	$\delta_{as} NbN_4$		274 (33) [0.32]	253 (38) [2.0]
V ₄₀	$\delta_{as}NbN_4$		273 (32) [0.31]	253 (40) [1.9]
$v_{41}$	$\delta NbN_5$	250 [0.7]	246 (3.5) [24]	236 (0.87) [0.83]
V ₄₂	$\delta NbN_5$	226 [0.6]	226 (0.43) [0.98]	228 (1.8) [30]
$v_{43}$	$\delta NbN_5$		226 (0.43) [0.98]	215 (11) [1.2]
V ₄₄	δ _{CH3CN-NbN5}		210 (0.32) [0.12]	215 (10) [1.4]
$V_{45}$	$\delta_{\text{CH3CN-NbN5}}$		210 (0.32) [0.11]	183 (0.96) [0.79]
V46	$\delta NbN_5$		203 (1.2) [0.27]	182 (0.97) [0.83]
$v_{47}$	$\delta NbN_5$	192 [0.9]	182 (0.0004) [15]	169 (0) [14]
$\nu_{48}$	τ		126 (0) [0]	107 (2.6) [11]
$\nu_{49}$	τ		115 (0.95) [6.0]	107 (2.4) [11]
$\nu_{50}$	τ		115 (0.96) [6.0]	86 (0.005) [0.006]
$\nu_{51}$	τ		57 (0.0004) [24]	45 (0.027) [24]
$\nu_{52}$	τ		48 (3.7) [28]	42 (4.1) [33]
$\nu_{53}$	τ		40 (2.0) [0.12]	34 (1.1) [2.2]
$\nu_{54}$	τ		40 (2.1) [0.13]	37 (1.2) [2.6]
$\nu_{55}$	τ		33 (1.0) [6.7]	30 (0.0025) [11]
$\nu_{56}$	τ		33 (0.99) [6.7]	17 (0.78) [17]
$\nu_{57}$	τ		30 (0.003) [15]	27 (0.019) [12]
$\nu_{58}$	τ		26 (0.82) [11]	17 (0.34) [16]

$V_{59}$	τ	26 (0.77) [11]	15 (0.40) [0.72]
V ₆₀	τ	10 (0.0004) [0.019]	7 (0.66) [0.44]

[a] Calculated IR and Raman intensities are given in km mol⁻¹ and Å⁴ amu⁻¹, respectively. The given assignments of the observed frequencies are for the calculated B3LYP frequencies. The MP2 values have not been matched with either the B3LYP values or the observed spectrum.

Table S5. Comparison of observed and unscaled calculated vibrational frequencies [cm $^{-1}$ ] and intensities for  $[Ta(N_3)_6]^{-[a]}$  in point group  $C_1$ 

		ol	bserved	Calculated (IR) [Raman]	
	description	IR	Ra	B3LYP/SBK+(d)	MP2/SBK+(d)
$v_1$	$\nu_{as}N_3$		2159 [10.0]	2238 (100) [940]	2281 (1924) [5.1]
/2	$v_{as}N_3$	2124 vs	2111 [1.0]	2199 (2670) [120]	2181 (1926) [5.1]
V ₃	$v_{as}N_3$	2113 vs	2103 [1.0]	2193 (2307) [130]	2168 (534) [0.86]
V ₄	$v_{as}N_3$	2096 vs	2091 [0.8]	2189 (3036) [38]	2169 (771) [0.59]
15	$v_{as}N_3$	2087 vs	2081 [0.7]	2178 (8.1) [221]	2169 (59) [1.5]
V ₆	$v_{as}N_3$			2172 (176) [193]	2167 (0.021) [444]
V ₇	$v_sN_3$			1441 (14) [55]	1304 (0.0004) [123
, /8	$v_sN_3$	1383 m		1421 (197) [25]	1297 (7.1) [103]
V9	$v_sN_3$	1372 m		1417 (118) [28]	1298 (6.9) [103]
V ₁₀	$v_sN_3$	1360 ms	1355 [0.8]	1414 (336) [18]	1293 (157) [0.003]
V ₁₁	$v_sN_3$	1348 s		1412 (420) [7.7]	1292 (232) [67]
V ₁₂	$v_sN_3$			1409 (338) [13]	1292 (232) [67]
V ₁₃	$\delta N_3$	648 vw		605 (7.4) [0.49]	581 (0.0004) [8.6]
V ₁₄	$\delta N_3$	615 m	609 [0.6]	599 (30) [1.2]	563 (13) [4.7]
V ₁₅	$\delta N_3$	600 mw	[]	597 (25) [1.6]	563 (12) [4.7]
V16	$\delta N_3$			595 (15) [1.9]	553 (23) [8.0]
V 10	$\delta N_3$			594 (0.45) [0.60]	553 (23) [8.0]
v ₁₈	$\delta N_3$			592 (10) [0.54]	551 (20) [0.014]
v 18 V 19	$\delta N_3$			590 (12) [1.4]	534 (0.04) [0.027]
V ₂₀	$\delta N_3$			586 (3.4) [0.35]	535 (0) [2.6]
v ₂₀ V ₂₁	$\delta N_3$	585 mw		585 (16) [0.39]	534 (0.04) [0.029]
V ₂₁ V ₂₂	$\delta N_3$	202 1111		584 (20) [0.44]	530 (0.060) [1.1]
v 22 V 23	$\delta N_3$		582 [0.4]	583 (16) [1.9]	530 (0.063) [1.1]
	$\delta N_3$	576 w	302 [0.1]	578 (17) [0.24]	521 (23) [0]
V24	vMN	433 w	437 [2.8]	418 (1.9) [73]	414 (0.0009) [155]
V25	νMN	418 mw	457 [2.0]	377 (281) [1.3]	389 (294) [0.10]
V ₂₆	vMN	414 mw	372 [0.7]	375 (288) [1.3]	389 (294) [0.10]
V ₂₇	vMN	11 1 11111	364 [0.8]	369 (306) [0.63]	369 (357) [0]
V ₂₈	νMN		353 [0.8]	344 (7.4) [1.5]	341 (40) [5.2]
V ₂₉	vMN		333 [0.0]	337 (41) [2.1]	341 (40) [5.1]
V ₃₀	δΜΝ			271 (31) [3.2]	266 (57) [4.8]
V31				261 (31) [2.7]	266 (57) [4.8]
V ₃₂	δMN			254 (9.6) [6.3]	256 (0) [27]
V ₃₃	δMN		225 [1.8]	233 (24) [13]	215 (4.5) [4.7]
V ₃₄	δMN		223 [1.6]	228 (17) [11]	215 (4.5) [4.7]
V ₃₅	δMN		215 [1.8]	221 (9.6) [7.4]	209 (40) [0]
V ₃₆	δMN		168 [2.6]	181 (0.76) [18]	167 (0) [19]
V ₃₇	δMN		100 [2.0]	176 (0.06) [7.5]	167 (0) [19]
V ₃₈	δMN		160 [2.6]	170 (0.00) [7.5]	161 (0.28) [19]
V39	δMN		100 [2.0]		
V ₄₀	τ			91 (0.55) [7.3] 83 (0.13) [10]	79 (3.6) [0] 44 (0.006) [19]
V ₄₁	τ			` / - 3	
V ₄₂	τ			79 (0.48) [0.69]	44 (0.004) [19]
V ₄₃	τ			44 (2.4) [19]	43 (0) [28]
44	τ			41 (0.81) [18]	37 (1.7) [16]
V ₄₅	τ			39 (1.2) [18]	37 (1.8) [16]
V46	τ			38 (0.47) [17]	28 (0.73) [28]
$v_{47}$	τ			36 (2.8) [11]	28 (0.75) [28]
$v_{48}$	τ			35 (1.4) [7.3]	27 (0.0004) [3.6]
V ₄₉	τ			30 (0.44) [3.9]	14 (0.60) [6.5]
V ₅₀	τ			27 (0.22) [10]	14 (0.58) [6.3]
V ₅₁	τ			22 (0.81) [6.5]	9 (2.8) [0.002]

[a] Calculated IR and Raman intensities are given in km mol⁻¹ and Å⁴ amu⁻¹, respectively; observed spectra are for the solid  $[P(C_6H_5)_4]^+$  salt. The MP2 values have not been matched with either the B3LYP values or the observed spectrum.